Collaborative Representation for Classification, Sparse or Non-sparse?
نویسندگان
چکیده
Sparse representation based classification (SRC) has been proved to be a simple, effective and robust solution to face recognition. As it gets popular, doubts on the necessity of enforcing sparsity starts coming up, and primary experimental results showed that simply changing the l1-norm based regularization to the computationally much more efficient l2-norm based non-sparse version would lead to a similar or even better performance. However, that’s not always the case. Given a new classification task, it’s still unclear which regularization strategy (i.e., making the coefficients sparse or non-sparse) is a better choice without trying both for comparison. In this paper, we present as far as we know the first study on solving this issue, based on plenty of diverse classification experiments. We propose a scoring function for pre-selecting the regularization strategy using only the dataset size, the feature dimensionality and a discrimination score derived from a given feature representation. Moreover, we show that when dictionary learning is taking into account, non-sparse representation has a more significant superiority to sparse representation. This work is expected to enrich our understanding of sparse/non-sparse collaborative representation for classification and motivate further research activities.
منابع مشابه
Image Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملVoice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملDeblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation
JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1403.1353 شماره
صفحات -
تاریخ انتشار 2014